Extraction of transversity in a collinear framework

Alessandro Bacchetta in collaboration with M. Radici, A. Courtoy, A. Bianconi, M. Guagnelli

Funded by

One slide on TMDs

quark pol.

nucleon pol.

	U	${ m L}$	\mathbf{T}
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Twist-2 TMDs

One slide on TMDs

quark pol.

_	
	Q
	Π
	TE
•	\mathbf{C}
	III

	U	L	\mathbf{T}
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Twist-2 TMDs

transversity

Integrated over transv. momentum

quark pol.

		U	${ m L}$	\mathbf{T}
pol.	U	f_1		
	L		g_{1L}	
nucleon	Τ			h_1

Twist-2 collinear PDFs

transversity

Integrated over transv. momentum

quark pol. IJ nucleon pol f_1 g_{1L} h_1 transversity Twist-2 collinear PDFs

This is going to be a TMD-free talk (almost)

Fundamental property of the nucleon

- Fundamental property of the nucleon
- Can test validity of approaches to nonperturbative QCD (e.g. models, lattice QCD calculations)

- Fundamental property of the nucleon
- Can test validity of approaches to nonperturbative QCD (e.g. models, lattice QCD calculations)
- Can be used to test details of perturbative QCD (factorization and evolution in a gluon-free sector)

- Fundamental property of the nucleon
- Can test validity of approaches to nonperturbative QCD (e.g. models, lattice QCD calculations)
- Can be used to test details of perturbative QCD (factorization and evolution in a gluon-free sector)
- Can be used to put limits on couplings beyond Standard Model (tensor coupling)

see, e.g., Courtoy et al. 1503.06814

Transversity observables (present)

Collinear factorization

Transversity observables (present)

Collinear factorization

dihadron interference FF

Transversity observables (present)

Collinear factorization

dihadron interference FF

TMD factorization

The bottom line

Anselmino et al.,

P.R.D87 (13) 094019

dihadron extraction

Radici et al., <u>arXiv:1503.03495</u>

single-hadron extractions

Single hadron

see A. Prokudin's talk

SIDIS

$$A_{DIS}(x, z, P_{h\perp}^2) = -\langle C_y \rangle \frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes_C H_{1,q}^{\perp}(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_{1,q}(z, k_T^2)}$$

$$\ldots \otimes \ldots \to \int d^2 \boldsymbol{p}_T d^2 \boldsymbol{k}_T \delta^2 (\boldsymbol{p}_T + \boldsymbol{q}_T - \boldsymbol{p}_T) \ldots$$

Two hadrons

SIDIS

$$A_{DIS}(x, z, M_h^2) = -\langle C_y \rangle \frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

Collinear Factorization

Collinear Factorization
Universality

Collinear Factorization

Universality

DGLAP evolution

Ceccopieri, Radici, Bacchetta, P.L. B650 (07) 81

p-p to pions

Single hadron

see A. Prokudin's talk

SIDIS

$$A_{DIS}(x, z, P_{h\perp}^2) = -\langle C_y \rangle \frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes_C H_{1,q}^{\perp}(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_{1,q}(z, k_T^2)}$$

Single hadron

see A. Prokudin's talk

SIDIS

$$A_{DIS}(x, z, P_{h\perp}^2) = -\langle C_y \rangle \frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes_C H_{1,q}^{\perp}(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_{1,q}(z, k_T^2)}$$

e⁺e⁻

$$A_{e+e-}(z,\bar{z},Q_T^2) = -\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \frac{\sum_q e_q^2 H_{1,q}^{\perp}(z,k_T^2) \otimes_C' H_{1,\bar{q}}^{\perp}(\bar{z},\bar{k}_T^2)}{\sum_q e_q^2 D_{1,q}(z,k_T^2) \otimes_C' D_{1,\bar{q}}(\bar{z},\bar{k}_T^2)}$$

Two hadrons

SIDIS

$$A_{DIS}(x, z, M_h^2) = -\langle C_y \rangle \frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

Two hadrons

SIDIS

$$A_{DIS}(x, z, M_h^2) = -\langle C_y \rangle \frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

e⁺e⁻

$$A_{e+e-}(z, M_h^2, \bar{z}, \bar{M}_h^2) = -\frac{\langle \sin^2 \theta_2 \rangle \langle \sin \theta \rangle \langle \sin \bar{\theta} \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \frac{\sum_q e_q^2 \frac{|R|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2) \frac{|\bar{R}|}{\bar{M}_h} H_{1,\bar{q}}^{\triangleleft}(\bar{z}, \bar{M}_h^2)}{\sum_q e_q^2 D_{1,q}(z, M_h^2) D_{1,\bar{q}}(\bar{z}, \bar{M}_h^2)}$$

$$R_T^{\mu} = g_T^{\mu\nu} R_{\nu} = R^{\mu} - \frac{\zeta_h}{2} P_h^{\mu} + x_B \frac{\zeta_h M_h^2 - (M_1^2 - M_2^2)}{Q^2 z_h} P^{\mu}$$

$$R_T^{\mu} = g_T^{\mu\nu} R_{\nu} = R^{\mu} - \frac{\zeta_h}{2} P_h^{\mu} + x_B \frac{\zeta_h M_h^2 - (M_1^2 - M_2^2)}{Q^2 z_h} P^{\mu}$$

$$D_1^{q \to h_1 h_2}(z_1, z_2, R_T^2)$$

$$R_T^{\mu} = g_T^{\mu\nu} R_{\nu} = R^{\mu} - \frac{\zeta_h}{2} P_h^{\mu} + x_B \frac{\zeta_h M_h^2 - (M_1^2 - M_2^2)}{Q^2 z_h} P^{\mu}$$

$$D_1^{q o h_1 h_2}(z_1, z_2, R_T^2)$$
 or

$$R_T^{\mu} = g_T^{\mu\nu} R_{\nu} = R^{\mu} - \frac{\zeta_h}{2} P_h^{\mu} + x_B \frac{\zeta_h M_h^2 - (M_1^2 - M_2^2)}{Q^2 z_h} P^{\mu}$$

$$D_1^{q \to h_1 h_2}(z_1, z_2, R_T^2)$$

or

$$D_1^{q \to h_1 h_2}(z, \cos \theta, M_h)$$

$$R_T^{\mu} = g_T^{\mu\nu} R_{\nu} = R^{\mu} - \frac{\zeta_h}{2} P_h^{\mu} + x_B \frac{\zeta_h M_h^2 - (M_1^2 - M_2^2)}{Q^2 z_h} P^{\mu}$$

$$D_1^{q \to h_1 h_2}(z_1, z_2, R_T^2)$$

or

$$D_1^{q \to h_1 h_2}(z, \cos \theta, M_h)$$

$$R_T^{\mu} = g_T^{\mu\nu} R_{\nu} = R^{\mu} - \frac{\zeta_h}{2} P_h^{\mu} + x_B \frac{\zeta_h M_h^2 - (M_1^2 - M_2^2)}{Q^2 z_h} P^{\mu}$$

$$D_1^{q \to h_1 h_2}(z_1, z_2, R_T^2)$$

or

$$D_1^{q \to h_1 h_2}(z, \cos \theta, M_h)$$

Unpolarized DiFF

Interference Fragmentation Function

Collins, Heppelman, Ladinsky, NPB420 (94)

$$H_{1,q\to h_1h_2}^{\triangleleft}(z,\cos\theta,M_h)$$

Interference Fragmentation Function

Collins, Heppelman, Ladinsky, NPB420 (94)

$$H_{1,q\to h_1h_2}^{\triangleleft}(z,\cos\theta,M_h)$$

Does not vanish if integrated over transverse momentum

Interference Fragmentation Function

Collins, Heppelman, Ladinsky, NPB420 (94)

$$H_{1,q\to h_1h_2}^{\triangleleft}(z,\cos\theta,M_h)$$

Does not vanish if integrated over transverse momentum

(the two hadrons must be distinguishable)

Partial wave expansion

Bacchetta & Radici, P.R. D67 (03) 094002

$$D_1(z,\cos\theta,M_h)\approx D_1(z,M_h)+D_{1,sp}(z,M_h)\cos\theta+\dots$$

$$|\mathbf{R}_T| \ H_1^{\triangleleft}(z,\cos\theta,M_h) \approx H_{1,sp}^{\triangleleft}(z,M_h) \ \sin\theta + H_{1,pp}^{\triangleleft}(z,M_h) \ \sin\theta\cos\theta + \dots$$

Partial wave expansion

Bacchetta & Radici, P.R. D67 (03) 094002

$$D_1(z, \cos \theta, M_h) \approx D_1(z, M_h) + D_{1,sp}(z, M_h) \cos \theta + \dots$$
$$|\mathbf{R}_T| \ H_1^{\triangleleft}(z, \cos \theta, M_h) \approx H_{1,sp}^{\triangleleft}(z, M_h) \sin \theta + H_{1,pp}^{\triangleleft}(z, M_h) \sin \theta \cos \theta + \dots$$

involved in recent measured asymmetries

Partial wave expansion

Bacchetta & Radici, P.R. D67 (03) 094002

$$D_1(z, \cos \theta, M_h) \approx D_1(z, M_h) + D_{1,sp}(z, M_h) \cos \theta + \dots$$
$$|\mathbf{R}_T| \ H_1^{\triangleleft}(z, \cos \theta, M_h) \approx H_{1,sp}^{\triangleleft}(z, M_h) \sin \theta + H_{1,pp}^{\triangleleft}(z, M_h) \sin \theta \cos \theta + \dots$$

involved in recent measured asymmetries

Caveat: dihadron fragmentation functions depend on three variables and effects of experimental acceptance are complicated

TMD dihadron FFs

Bianconi, Boffi, Jakob, Radici, PRD62 (00) Boer, Jakob, Radici, P.R. D67 (03) 094003 Gliske, Bacchetta, Radici, Phys. Rev. D90 (14)

TMD dihadron FFs

Bianconi, Boffi, Jakob, Radici, PRD62 (00) Boer, Jakob, Radici, P.R. D67 (03) 094003 Gliske, Bacchetta, Radici, Phys. Rev. D90 (14)

Unpolarized cross section

$$e^+e^- \rightarrow (\pi^+\pi^-) + X$$

$$\frac{d\sigma^{0}}{dzdM_{h}} = \frac{4\pi\alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}(z, M_{h})$$

Unpolarized cross section

$$e^+e^- \rightarrow (\pi^+\pi^-) + X$$

$$\frac{d\sigma^{0}}{dzdM_{h}} = \frac{4\pi\alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}(z, M_{h})$$

Data not yet available!

Unpolarized cross section

$$e^+e^- \rightarrow (\pi^+\pi^-) + X$$

$$\frac{d\sigma^{0}}{dzdM_{h}} = \frac{4\pi\alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}(z, M_{h})$$

Data not yet available!

Need multiplicities for

$$e^+e^- \rightarrow (\pi^+\pi^-) + X$$
 or
$$e+p \rightarrow e' + (\pi^+\pi^-) + X$$

Unpolarized cross section

$$e^+e^- \rightarrow (\pi^+\pi^-) + X$$

$$\frac{d\sigma^{0}}{dzdM_{h}} = \frac{4\pi\alpha^{2}}{Q^{2}} \sum_{q} e_{q}^{2} D_{1}^{q}(z, M_{h})$$

Data not yet available!

Temporary solution: use output of event generators (PYTHIA)

Results for unpolarized DiFF

Courtoy et al., P.R. D85 (12) 114023

M_h behavior

 $Q_0^2 = 1 \text{ GeV}^2$

Results for unpolarized DiFF

Courtoy et al., P.R. D85 (12) 114023

M_h behavior

$$Q_0^2 = 1 \text{ GeV}^2$$

z behavior

No unpolarized data

- No unpolarized data
- Little sensitivity to gluon fragmentation function Input $D_1^{q \to \pi + \pi -}(z, M_h)$ parametrized at initial scale $Q_0^2 = 1$ GeV² then evolved at $Q_0^2 = 100$ GeV²

Not so important for SIDIS, but can be very important for pp collisions

- No unpolarized data
- Little sensitivity to gluon fragmentation function Input $D_1^{q \to \pi + \pi -}(z, M_{\rm h})$ parametrized at initial scale $Q_0^2 = 1$ GeV² then evolved at $Q_0^2 = 100$ GeV²
 - Not so important for SIDIS, but can be very important for pp collisions
- Need of model assumptions model-inspired fitting function (K^0 , ω , ρ resonances + continuum) charge conjugation + isospin $u = \overline{u}$ $d = \overline{d}$ $s = \overline{s}$ $c = \overline{c}$ u = d except for $K^0 \to \pi^+\pi^-$

- No unpolarized data
- Little sensitivity to gluon fragmentation function Input $D_1^{q \to \pi + \pi -}(z, M_h)$ parametrized at initial scale $Q_0^2 = 1$ GeV² then evolved at $Q_0^2 = 100$ GeV²
 - Not so important for SIDIS, but can be very important for pp collisions
- Need of model assumptions model-inspired fitting function (K^0 , ω , ρ resonances + continuum) charge conjugation + isospin $u = \overline{u}$ $d = \overline{d}$ $s = \overline{s}$ $c = \overline{c}$ u = d except for $K^0 \to \pi^+\pi^-$
- Region z < 0.2 excluded from fit

- No unpolarized data
- Little sensitivity to gluon fragmentation function Input $D_1^{q \to \pi + \pi -}(z, M_h)$ parametrized at initial scale $Q_0^2 = 1$ GeV² then evolved at $Q_0^2 = 100$ GeV² Not so important for SIDIS, but can be very important for pp collisions
- Need of model assumptions model-inspired fitting function (K^0 , ω , ρ resonances + continuum) charge conjugation + isospin $u = \overline{u} \quad d = \overline{d} \quad s = \overline{s} \quad c = \overline{c}$ $u = d \quad \text{except for} \quad K^0 \rightarrow \pi^+\pi^-$
- Region z < 0.2 excluded from fit
- Approach valid for M_h>>> Q

Extraction of Interference FF

Extraction of Interference FF

$$A_{e+e-}(z, M_h^2, \bar{z}, \bar{M}_h^2) = -\frac{\langle \sin^2 \theta_2 \rangle \langle \sin \theta \rangle \langle \sin \bar{\theta} \rangle}{\langle 1 + \cos^2 \theta_2 \rangle} \frac{\sum_q e_q^2 \frac{|\mathbf{R}|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2) \frac{|\bar{\mathbf{R}}|}{\bar{M}_h} H_{1,\bar{q}}^{\triangleleft}(\bar{z}, \bar{M}_h^2)}{\sum_q e_q^2 D_{1,q}(z, M_h^2) D_{1,\bar{q}}(\bar{z}, \bar{M}_h^2)}$$

Extraction of Interference FF

Vossen, Seidl et al. (Belle), PRL 107 (2011)

Assumptions

For π^+ π^-

$$H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}} , \quad H_1^{\triangleleft s} = -H_1^{\triangleleft \bar{s}} = 0$$

Most recent results

Radici et al., JHEP 1505 (15) 123

 $Q_0^2 = 1 \text{ GeV}^2$

*M*_h behavior

z behavior

Transversity extraction

Radici, Jakob, Bianconi, P.R. D**65** (02) 074031 Bacchetta & Radici, P.R. D**67** (03) 094002

$$A_{\text{SIDIS}}(x, z, M_h; Q) = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x; Q^2) H_1^{\triangleleft q}(z, M_h; Q^2)}{\sum_q e_q^2 f_1^q(x; Q^2) D_1^q(z, M_h; Q^2)}$$

Transversity extraction

Radici, Jakob, Bianconi, P.R. D**65** (02) 074031 Bacchetta & Radici, P.R. D**67** (03) 094002

$$A_{\text{SIDIS}}(x, z, M_h; Q) = -\frac{B(y)}{A(y)} \frac{|\mathbf{R}|}{M_h} \frac{\sum_q e_q^2 h_1^q(x; Q^2) H_1^{\triangleleft q}(z, M_h; Q^2)}{\sum_q e_q^2 f_1^q(x; Q^2) D_1^q(z, M_h; Q^2)}$$

$$n_q^{\uparrow} = \int dz \int dM_h^2 \frac{|\mathbf{R}|}{M_h} H_{1,sp}^{\triangleleft q}(z, M_h^2)$$
$$n_q = \int dz \int dM_h^2 D_1^q(z, M_h^2)$$

$$n_{q}^{\uparrow} = \int dz \int dM_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2})$$

$$n_{q} = \int dz \int dM_{h}^{2} D_{1}^{q}(z, M_{h}^{2})$$

$$n_{q} = n_{\bar{q}} \quad n_{q}^{\uparrow} = -n_{\bar{q}}^{\uparrow}$$

$$n_{u}^{\uparrow} = -n_{d}^{\uparrow}$$

$$n_{q}^{\uparrow} = \int dz \int dM_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2})$$

$$n_{q} = \int dz \int dM_{h}^{2} D_{1}^{q}(z, M_{h}^{2})$$

$$n_{q} = n_{\bar{q}} \quad n_{q}^{\uparrow} = -n_{\bar{q}}^{\uparrow}$$

$$n_{q} = -n_{\bar{q}}^{\uparrow}$$

proton

$$x h_1^p(x; Q^2) \equiv x h_1^{u_v}(x; Q^2) - \frac{1}{4} x h_1^{d_v}(x; Q^2)$$

$$= -\frac{A_{\text{SIDIS}}^p(x; Q^2)}{n_u^{\uparrow}(Q^2)} \frac{A(y)}{B(y)} \frac{9}{4} \sum_{q=u,d,s} e_q^2 n_q(Q^2) x f_1^{q+\bar{q}}(x; Q^2)$$

$$n_{q}^{\uparrow} = \int dz \int dM_{h}^{2} \frac{|\mathbf{R}|}{M_{h}} H_{1,sp}^{\triangleleft q}(z, M_{h}^{2})$$

$$n_{q} = \int dz \int dM_{h}^{2} D_{1}^{q}(z, M_{h}^{2})$$

$$n_{q} = n_{\bar{q}} \quad n_{q}^{\uparrow} = -n_{\bar{q}}^{\uparrow}$$

$$n_{q} = -n_{\bar{q}}^{\uparrow}$$

proton

$$x h_1^p(x; Q^2) \equiv x h_1^{u_v}(x; Q^2) - \frac{1}{4} x h_1^{d_v}(x; Q^2)$$

$$= -\frac{A_{\text{SIDIS}}^p(x; Q^2)}{n_u^{\uparrow}(Q^2)} \frac{A(y)}{B(y)} \frac{9}{4} \sum_{q=u,d,s} e_q^2 n_q(Q^2) x f_1^{q+\bar{q}}(x; Q^2)$$

deuteron

$$\begin{split} x \, h_1^D(x;Q^2) &\equiv x \, h_1^{u_v}(x;Q^2) + x h_1^{d_v}(x;Q^2) \\ &= -\frac{A_{\text{SIDIS}}^D(x;Q^2)}{n_u^{\uparrow}(Q^2)} \, 3 \, \sum_{q=u,d,s} \left[e_q^2 \, n_q(Q^2) + e_{\tilde{q}}^2 \, n_{\tilde{q}}(Q^2) \right] \, x f_1^{q+\bar{q}}(x;Q^2) \end{split}$$

Literature

<u>data</u>

proton target

Airapetian et al., JHEP **0806** (08) 017

proton + deuteron

Adolph et al., P.L. **B713** (12)

new proton data Braun et al., E.P.J. Web Conf. **85** (15) 02018

extraction

$$xh_1^{u_v}(x) - \frac{1}{4}xh_1^{d_v}(x)$$

Bacchetta, Courtoy, Radici, P.R.L. **107** (11) 012001

$$xh_1^{u_v}(x)$$
, $xh_1^{d_v}(x)$

Bacchetta, Courtoy, Radici, JHEP **1303** (13) 119

new fit

Radici et al., JHEP **1505** (15) 123

at starting scale $Q_0^2 = 1 \text{ GeV}^2$

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x}\left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right] \left[x\operatorname{SB}_q(x) + x\operatorname{\overline{SB}}_{\bar{q}}(x)\right]$$

at starting scale $Q_0^2 = 1 \text{ GeV}^2$

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x}\left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right] \left[x\operatorname{SB}_q(x) + x\operatorname{\overline{SB}}_{\bar{q}}(x)\right]$$

satisfies Soffer Bound at any Q²

$$2|h_1^q(x,Q^2)| \le 2 \operatorname{SB}_q(x) = |f_1^q(x) + g_1^q(x)|$$

at starting scale $Q_0^2 = 1 \text{ GeV}^2$

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x}\left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right] \left[x\operatorname{SB}_q(x) + x\operatorname{\overline{SB}}_{\bar{q}}(x)\right]$$

satisfies Soffer Bound at any Q²

$$2|h_1^q(x,Q^2)| \le 2 \operatorname{SB}_q(x) = |f_1^q(x) + g_1^q(x)|$$

at starting scale $Q_0^2 = 1 \text{ GeV}^2$

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x}\left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right] \left[x\operatorname{SB}_q(x) + x\operatorname{\overline{SB}}_{\bar{q}}(x)\right]$$

rigid

flexible

satisfies Soffer Bound at any Q²

$$2|h_1^q(x,Q^2)| \le 2 \operatorname{SB}_q(x) = |f_1^q(x) + g_1^q(x)|$$

at starting scale $Q_0^2 = 1 \text{ GeV}^2$

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x}\left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right] \left[x\operatorname{SB}_q(x) + x\operatorname{\overline{SB}}_{\bar{q}}(x)\right]$$

rigid

flexible

extra-flexible

$\chi^2/{ m d.o.f.}$	$\alpha_s(M_Z^2) = 0.125$	$\alpha_s(M_Z^2) = 0.139$
rigid	1.42	1.46
flexible	1.65	1.71
extraflexible	1.97	2.07

Results

Extra flexible

If not otherwise stated, we usually quote the results of the flexible scenario and α_{S} =0.125

Results

If not otherwise stated, we usually quote the results of the flexible scenario and α_{S} =0.125

Replicas outside 68% band

Tensor charges

Tensor charges

Tensor charges

x-Q² coverage: helicity

M. Stratmann, talk at DIS2012

About 500 data points

x-Q² coverage: transversity

x-Q² coverage: transversity

Data points: helicity

Sato, Melnitchouk, Kuhn, Ethier, Accardi, arXiv:1601.07782

2500 points
1800 points excluding g₂-related measurements
500 points excluding g₂-related and JLab

• Extraction of transversity from dihadron fragmentation function is feasible

- Extraction of transversity from dihadron fragmentation function is feasible
- Complementary to single-hadron observables (products vs. convolutions, collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)

- Extraction of transversity from dihadron fragmentation function is feasible
- Complementary to single-hadron observables (products vs. convolutions, collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)
- Important cross check of TMD approach

- Extraction of transversity from dihadron fragmentation function is feasible
- Complementary to single-hadron observables (products vs. convolutions, collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)
- Important cross check of TMD approach
- Need of unpolarized data (e+e-, pp collisions, SIDIS)

- Extraction of transversity from dihadron fragmentation function is feasible
- Complementary to single-hadron observables (products vs. convolutions, collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)
- Important cross check of TMD approach
- Need of unpolarized data (e+e-, pp collisions, SIDIS)
- Need of data from high x (JLab) and low x (EIC)

- Extraction of transversity from dihadron fragmentation function is feasible
- Complementary to single-hadron observables (products vs. convolutions, collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)
- Important cross check of TMD approach
- Need of unpolarized data (e+e-, pp collisions, SIDIS)
- Need of data from high x (JLab) and low x (EIC)
- Need different hadron pairs (COMPASS)

- Extraction of transversity from dihadron fragmentation function is feasible
- Complementary to single-hadron observables (products vs. convolutions, collinear vs TMD factorization, DGLAP vs. TMD evolution, use in pp collisions)
- Important cross check of TMD approach
- Need of unpolarized data (e+e-, pp collisions, SIDIS)
- Need of data from high x (JLab) and low x (EIC)
- Need different hadron pairs (COMPASS)
- Need of polarized pp collisions (STAR) → see next talk